병렬처리는 결국 필수 불가결한 요소가 될 것임에는 분명하다. 확실히 단일 코어 발전 대비 성능 비율이 언젠가부터 매우 낮아진다는 것을 확인할 수 있다. CPU 를 듀얼 혹은 쿼드로 쓰는 것도 꽤 매리트가 있지만, 알고리즘을 연구하는 사람으로써 그런 한 두개의 병렬을 가지고 큰 효과를 보기에는 그 한계가 명확하다. 결국 요래저래 살펴보다가 또다시 GPU 쪽으로 눈이 돌아가게 되었는데, 그 당시에는 그렇게 어렵게만 느껴지던 CUDA 라는 것이 그렇게 어려운 녀석이 아니었다. 일련의 흐름에 따라서 프로그래밍을 하면 되는데, 1. 디바이스의 초기화 2. GPU 상의 메모리 할당 ( cudaMalloc ) 3. CPU 상에서 GPU 상으로 처리할 내용을 복사 ( cudaMemcpy ) 4. 커널을 수행함으로써 원..